Global asymptotic stability of nonconvex sweeping processes


Building upon the technique that we developed earlier for perturbed sweeping processes with convex moving constraints and monotone vector fields (Kamenskii et al, Nonlinear Anal. Hybrid Syst. 30, 2018), the present paper establishes the conditions for global asymptotic stability of global and periodic solutions to perturbed sweeping processes with prox-regular moving constraints. Our conclusion can be formulated as follows: closer the constraint to a convex one, weaker monotonicity is required to keep the sweeping process globally asymptotically stable. We explain why the proposed technique is not capable to prove global asymptotic stability of a periodic regime in a crowd motion model (Cao-Mordukhovich, DCDS-B 22, 2017). We introduce and analyze a toy model which clarifies the extent of applicability of our result.

Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139