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Abstract. Building upon the technique that we developed earlier for per-

turbed sweeping processes with convex moving constraints and monotone vec-
tor fields (Kamenskii et al, Nonlinear Anal. Hybrid Syst. 30, 2018), the present

paper establishes the conditions for global asymptotic stability of global and
periodic solutions to perturbed sweeping processes with prox-regular moving

constraints. Our conclusion can be formulated as follows: closer the constraint

to a convex one, weaker monotonicity is required to keep the sweeping pro-
cess globally asymptotically stable. We explain why the proposed technique

is not capable to prove global asymptotic stability of a periodic regime in a

crowd motion model (Cao-Mordukhovich, DCDS-B 22, 2017). We introduce
and analyze a toy model which clarifies the extent of applicability of our result.

1. Introduction. Let t 7→ C(t) be a set valued map which takes nonempty closed
values and f : R× Rn → Rn. Then the corresponding perturbed Moreau sweeping
process is given as

−ẋ ∈ N (C(t), x) + f(t, x) (1)

where N(C(t), ·) is the proximal normal cone to the set C(t), given by

N(C, x) = {v ∈ Rn : x ∈ proj(x+ αv,C) for some α > 0}
and proj(x,C) is the set of points of C closest to the point x.

We say an absolutely continuous function x is a solution of the sweeping process
(1) on an interval I ⊂ R if x(t) ∈ C(t) for each t and ẋ(t) satisfy (1) for a.e. t ∈ I.

Due to challenges from crowd motion modeling (Maury-Venel [20]), the existence
and uniqueness of a solution to nonconvex sweeping processes have being intensively
studied. The main problem of weakening the convexity of the set is the lack of
continuity of the map x 7→ proj(x,C) in general. Therefore, the concept of prox-
regularity came to the study of sweeping processes. A set C ⊂ Rn is called η-
prox-regular if, for any x ∈ C and any v ∈ N(C, x) such that ‖v‖ < 1, one has
x = proj(x+ηv, C). We note that, for η-prox-regular sets, the proximal normal cone
coincides (see Edmond-Thibault [12], Rockafellar-Wets [24]) with both the limiting

2010 Mathematics Subject Classification. Primary: 58F15, 58F17; Secondary: 53C35.
Key words and phrases. Sweeping process, prox–regular sets, monotone functions, periodic

solutions, global asymptotic stability.
∗ Corresponding author: Oleg Makarenkov.

1129

http://dx.doi.org/10.3934/dcdsb.2019212


1130 L. N. WADIPPULI, I. GUDOSHNIKOV AND O. MAKARENKOV

normal cone (also known as Mordukhovich normal cone, see [12]) and Clarke normal
cone.

There has been a significant interest in developing the qualitative theory and con-
trol methods for sweeping processes with prox-regular constraints lately. Colombo-
Goncharov [9], Benabdellah [3], Colombo and Monteiro Marques [10], and Thibault
[27] studied the existence and uniqueness of solutions to non-perturbed sweeping
processes with nonconvex prox-regular sets. Existence and uniqueness for perturbed
sweeping processes is considered in Edmond-Thibault [11], [12]. A sweeping process
with prox-regular set values appeared in the context of crowd motion modeling in
Maury-Venel [20] along with numerical simulations. Cao-Mordukhovich [6] illustrate
their result for nonconvex sweeping process using crowd motion model of traffic flow
in a corridor. Edmond-Thibault [12], Cao-Mordukhovich [7] studied optimal con-
trol problems related to a nonconvex perturbed sweeping process. Optimal control
problem of convex sweeping process which is coupled with a differential equation
was studied in Adam-Outrata [1] and the possibility of weakening the convexity to
prox-regularity is mentioned there.

The problem of the existence of periodic solutions in sweeping processes with
convex constraint was of interest lately, see e.g. Krejci [16, Theorem 3.14], Cas-
taing and Monteiro Marques [8, Theorem 5.3], Kunze [17], Kamenskii-Makarenkov
[15], Kamenskii et al [14], and references therein. When the sweeping process comes
as a model of an elastoplastic material (see e.g. Bastein et al [2]), the periodically
changing constraint corresponds to the cyclic loading applied to the material (see
Frederick-Armstrong [13], Polizzotto [23]). Much less is known for sweeping pro-
cesses with nonconvex constraints (often termed nonconvex sweeping processes).

In this paper we investigate stability of both arbitrary global solution and a
periodic solution of the sweeping process (1) with prox-regular set-valued function
C(t). The existence of globally exponentially stable global and periodic solutions
to (1) when C(t) is convex-valued has been recently established in Kamenskii et al
[14]. The central setting of [14] is the strong monotonicity of f in the sense that

〈f(t, x1)− f(t, x2), x1 − x2〉 ≥ α‖x1 − x2‖2, for all t ∈ R, x1, x2 ∈ Rn, (2)

for some fixed α > 0. A similar framework has been earlier used by Heemels-
Brogliato [5], Brogliato [4] and Leine-van de Wouw [18] to prove incremental sta-
bility of the sweeping process (1) with time-independent convex constraint. An
important breakthrough in establishing asymptotic stability of sweeping process
(1) with a prox-regular constraint C(t) has been made in Tanwani et al [26] for
f(t, x) = −Ax under the assumption that ẋ = Ax admits a quadratic Lyapunov
function. Our assumption (2) can be viewed as an analogue of the assumption of
[26]. Indeed, the assumption (2) implies that the differential equation −ẋ = f(t, x)

admits a Lyapunov function V (x) = ‖x‖2 with V̇ (x) ≤ −2αV (x).
The paper is organized as follows. The next section is devoted to the proof of

the main result (Theorem 2.4), which gives conditions for the global asymptotic
stability of a periodic solution to (1). The structure of the proof is motivated by
the method of our paper [14]. Indeed, the existence of a global solution to (1) is
justified by following the lines of the proof of Theorem 2.1 in [14] since the proof is
independent of the convexity of the set (the proof of Theorem 2.2 is still given in
Appendix for completeness). At the same time, additional assumptions, compared
to [14] are still required. First of all, in order to use the hypomonotonicity of the
proximal normal cone, we need f(·, x) to be globally bounded for each x ∈

⋃
t∈R

C(t),
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additionally to the assumptions of Theorem 2.2 in [14]. Furthermore, to obtain
contraction of solutions to sweeping process (1), a lower bound of constant α in (2)
depending on prox-regularity constant of the set C(t) is required (Theorem 2.3).

Section 3 is devoted to a toy model that illustrate the main result. Though global
stability of the sweeping process of crowd motion model of Maury-Venel [20] has
been the main driving force behind this paper, it still remains an open question as
we discuss in the Appendix.

2. The main result. Let C : R ⇒ Rn be a nonempty closed η-prox-regular set-
valued function with Lipschitz continuity

dH(C(t1), C(t2)) ≤ LC |t1 − t2|, for all t1, t2 ∈ R, and for some LC ≥ 0, (3)

where dH(C1, C2) is the Hausdorff distance between two closed sets C1, C2 ⊂ Rn
given by

dH(C1, C2) = max

{
sup
x∈C2

dist(x,C1), sup
x∈C1

dist(x,C2)

}
(4)

with dist(x,C) = inf {|x− c| : c ∈ C} . And let f : R × Rn → Rn be such that for
some Lf > 0

‖f(t1, x1)− f(t2, x2)‖ ≤ Lf‖t1 − t2‖+ Lf‖x1 − x2‖, (5)

for all t1, t2 ∈ R, x1, x2 ∈ Rn.
Here we will be using the hypomonotonicity of the proximal normal cone to η-

prox-regular sets. A set-valued mapping Φ : Rn ⇒ Rn is called hypomonotone on
O ⊂ Rn (Rockafellar-Wets [24, §12.28]), if there exists σ > 0 such that the mapping
Φ + σI is monotone on Rn, i.e.

〈v − v′, x− x′〉 ≥ −σ‖x− x′‖, v ∈ Φ(x), v′ ∈ Φ(x′), x, x′ ∈ O,

see also Mordukhovich [21, §5.1.1]. Define the truncated proximal normal cone
Nη(C, x) as

Nη(C, x) =

{
N(C, x) ∩Bη(0), if x ∈ C,
∅, if x 6∈ C.

As established in Poliquin et al [22], if C ⊂ Rn is η-prox-regular, then the truncated
mapping x⇒ Nη(C, x) is hypomonotone on C and, therefore,

〈v − v′, x− x′〉 ≥ −‖x− x′‖2 (6)

for v ∈ N(C, x), v′ ∈ N(C, x′) such that ‖v‖, ‖v′‖ ≤ η.
We will be using the following version of Gronwall-Bellman lemma Trubnikov-

Perov [28, Lemma 1.1.1.5] (see also Kamenskii et al [14, lemma 6.1]) in our proofs.

Lemma 2.1. (Gronwall-Bellman) Let an absolutely continuous function a :
[τ, T ]→ R satisfy

ȧ(t) ≤ λa(t) + b(t), for a.e. t ∈ [τ, T ],

where τ ≤ T and λ ∈ R are constants, and b : [τ, T ]→ R is an integrable function.
Then

a(t) ≤ eλta(τ) +

t∫
τ

eλ(t−s)b(s)ds, for all t ∈ [τ, T ].
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Theorem 2.2. Let C : R ⇒ Rn be a Lipschitz continuous function with constant
LC and let C(t) be nonempty, closed and η-prox-regular for each t ∈ R. Let f :
R×Rn → Rn satisfy Lipschitz condition (5). Then the sweeping process (1) has at
least one solution defined on the entire R.

The proof follows same steps as in the proofs of Theorem 2.1 and Theorem 2.2
of [14]. But we include the proof in the Appendix for completeness of the paper.

Theorem 2.3. Let the conditions of Theorem 2.2 hold and LC ≥ 0 is as given by
Theorem 2.2. Let

‖f(t, x)‖ ≤Mf , for all t ∈ R, x ∈
⋃
t∈R

C(t), (7)

where Mf ≥ 0 is a fixed constant. Assume that f satisfies the strong monotonicity
assumption (2) with

α >
LC +Mf

η
. (8)

Then the sweeping process (1) has a unique solution t 7→ x(t), defined on R. Fur-
thermore the global solution 7→ x(t) is globally exponentially stable.

A similar to (8) condition has been earlier offered in Tanwani et al [26, For-
mula (3.5)] for the case f(t, x) = −Ax. It says that closer η to ∞ (closer the
η-prox-regular set to a convex set) larger the interval of eligible α is. In particular,
the case η =∞ recovers the convex case, where it is sufficient to assume that α > 0
(see [14, Theorem 2.2]).

Proof. We note that by Edmond-Thibault [12, Proposition 1] for a solution x of (1)
with the initial condition x(τ) = x0,

‖ẋ(t) + f(t, x(t)‖ ≤ ‖f(t, x(t)‖+ LC , for t > τ.

Then with uniform boundedness of f we have

‖ẋ(t) + f(t, x(t)‖ ≤Mf + LC , for t > τ. (9)

Now let x1, x2 be two solutions of (1) with initial conditions x1(τ), x2(τ) ∈ C(τ).
Let t ≥ τ such that x1(t), x2(t) are defined on [t, τ ] and both ẋ1(t) and ẋ2(t) exist.

Since

−ẋ1(t)− f(t, x1(t)) ∈ N(C(t), (x1(t)), −ẋ2(t)− f(t, x2(t)) ∈ N(C(t), (x2(t)),

by hypomonotonicity condition (6) of the normal cone and by (9) we have〈
−η

Mf + LC
(ẋ1(t) + f(t, x1(t)))− −η

Mf + LC
(ẋ2(t) + f(t, x2(t))), x1(t)− x2(t)

〉
≥ −‖x1(t)− x2(t)‖2.

Then

‖x1(t)− x2(t)‖2− η

Mf + LC
〈f(t, x1(t))− f(t, x2(t)), x1(t)− x2(t)〉

≥ η

Mf + LC
〈ẋ1(t)− ẋ2(t), x1(t)− x2(t)〉,

and by (2),

η

Mf + LC
〈ẋ1(t)−ẋ2(t), x1(t)−x2(t)〉 ≤ ‖x1(t)−x2(t)‖2− ηα

Mf + LC
‖x1(t)−x2(t)‖2.
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Thus we have

〈ẋ1(t)− ẋ2(t), x1(t)− x2(t)〉 ≤
(
Mf + LC

η
− α

)
‖x1(t)− x2(t)‖2,

i.e.
d

dt
‖x1(t)− x2(t)‖2≤

(
2(Mf + LC)

η
− 2α

)
‖x1(t)− x2(t)‖2.

Let ᾱ = 1
η (Mf + LC − ηα). Then by Gronwall-Bellman lemma (2.1), for t > τ ,

‖x1(t)− x2(t)‖2≤ e2ᾱ(t−τ)‖x1(τ)− x2(τ)‖2,
and so

‖x1(t)− x2(t)‖≤ eᾱ(t−τ)‖x1(τ)− x2(τ)‖, for t > τ. (10)

Let x(t) be a global solution of (1) which exists by Theorem 2.2. Then (8)
guarantees that ᾱ < 0 and that x(t) is exponentially stable. It remains to observe
that x(t) is the only global solution. Indeed, let x̄(t) be another global solution.
Then, for each t ∈ R we can pass to the limit as τ → −∞ in (10), obtaining
‖x(t)− x̄(t)‖ ≤ 0, so x = x̄.

Now we give a theorem about periodicity of the unique global solution established
in Theorem 2.3. The proof follows the lines of Castaing and Monteiro Marques [8,
Theorem 5.3], but we include such a proof for completeness.

Theorem 2.4. The unique global solution x0 which comes from Theorem 2.3 is
T-periodic, if both maps t 7→ C(t) and t 7→ f(t, x) are T-periodic.

Proof. Note that a 7→ xa(T ) is a contraction mapping from C(0) to C(T ) = C(0),
where xa is the solution of (1) on [0, T ] with initial condition xa(0) = a ∈ C(0).
Indeed, by (10), for a, b ∈ C(0),

‖xa(T )− xb(T )‖≤ eᾱT ‖a− b‖
where ᾱ < 0.

Then, since a 7→ xa(T ) is continuous on C(0) (see Edmond-Thibault [12, Proposi-
tion 2]), by the contraction mapping principle on C(0) (see Rudin [25, p.220]), there
exists x̄ : [0, T ]→ C(0) such that x̄(0) = x̄(T ) and satisfies (1) on [0, T ]. Since both
t 7→ C(t) and t 7→ f(t, x) are T -periodic, we can extend x̄ to a T -periodic solution
defined on R by T -periodicity.

Since the global solution x0 given by Theorem 2.3 is unique, we have the result.

3. A toy model. In this section we consider an example where an r-prox-regular
set is obtained as the complement of an ellipse to a circle, and where the strongly
monotone vector field is just linear. We believe we introduce the simplest situation
where the r-prox-regular set under consideration approaches a convex set when a
parameter reaches certain critical value (being the height of the ellipse in our case).
We call our example a toy model, because it seems to be of a benchmark value.

Let the vector field f : R× R2 → R2 be given by

f(t, x) := αx, t ∈ R, x ∈ R2, (11)

where α > 0 is a fixed constant. We define the moving set C(t) using a function
b ∈ C1(R,R) which is bounded below by β ≥ 1 and admits a global Lipschitz
constant Lb, i.e.

|b(t1)− b(t2)| ≤ Lb|t1 − t2|, for all t1, t2 ∈ R. (12)
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Define

C(t) := B̄1

⋂
S(t), S(t) =

{
x ∈ R2 : x2

1 +
x2

2

b(t)2
≥ 1

}
. (13)

where B̄1 is the closed ball of radius 1 and centered at (−1.5, 0).
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Figure 1. Illustrations of the notations of the example. The
closed ball centered at (−1.5, 0) is B̄1 and the white ellipses are
the graphs of S(t) for different values of the argument. The arrows
is the vector field of ẋ = −αx.

In order to apply Theorem 2.3, we will now analyze: i) strong monotonicity and
uniform boundedness of f(t, x), ii) Lipschitz continuity of C(t), iii) prox-regularity
of C(t).

i) The monotonicity and boundedness of f(t, x). Since 〈f(t, x) − f(t, y), x − y〉 =
〈αx−αy, x− y〉 = α‖x− y‖2, f is strongly monotone with constant α and bounded
on B̄1 ⊃ C(t) by Mf = 2.5α.

ii) Lipschitz continuity of C(t). The boundary ∂B̄1 of B̄1 intersects the boundary
∂S(t) of S(t) at a unique point (p(t), q(t)) with q(t) ≥ 0. Since

dH(C(t), C(s)) ≤ ‖(p(t), q(t))− (p(s), q(s))‖
(see Fig. 1), we now aim at computing the Lipschitz constants of functions p and q.
Since b ∈ C1(R, [1,∞)), the implicit function theorem (see e.g. Zorich [29, Sec. 8.5.4,
Theorem 1]) ensures that p and q are differentiable on R. Therefore, by the mean-
value theorem (see e.g. Rudin [25, Theorem 5.10]),

dH(C(t), C(s)) ≤ ‖(p′(tp), q′(tq))‖ · |t− s|, (14)

where tp, tq are located between t and s. To compute (p′(tp), q
′(tq)), we use the for-

mula for the derivative of the implicit function (Zorich [29, Sec. 8.5.4, Theorem 1])

(p′(t), q′(t))T = −
(
F ′(p,q)

)−1

(p(t), q(t), t)F ′t (p(t), q(t), t),

applied with

F (p, q, t) =

 (p+ 1.5)2 + q2 − 1

p2 +
q2

b(t)2
− 1

 .
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Since

F ′(p,q)(p, q, t) = 2

(
p+ 1.5 q

p
q

b(t)2

)
, F ′t (p, q, t) =

(
0

−2b(t)−3b′(t)q2

)
,

we get the following formula for the derivatives p′ and q′(
p′(t)
q′(t)

)
= − 1

1

b(t)2
(p(t) + 1.5)q(t)− p(t)q(t)

(
q(t)

−(p(t) + 1.5)

)
1

b(t)3
q(t)2b′(t).

Noticing that the properties 1 + p(t) > 0 and −p(t)b(t)2 > 0 imply

1

b(t) · (p(t) + 1.5− p(t)b(t)2)
≤ 1

β · (−p(t)b(t)2)
≤ 1

β3|p0|
,

we conclude

|p′(t)| ≤ Lb
β3|p0|

, |q′(t)| ≤ Lb
β3|p0|

,

where p0 is such that p(t) ≤ p0 for all t ∈ R. Since b(t) ≥ 1, we can take p0 as the
abscissa of the intersection of ∂B̄1 with a unit circle centered at 0, i.e.

p0 = −0.75,

see Fig. 1. Substituting these achievements to (14), we conclude

dH(C(t), C(s)) ≤ 4Lb
3β3
|t− s|,

which gives LC =
4Lb
3β3

for the Lipschitz constant of t 7→ C(t).

iii) The constant η in η-prox-regularity of C(t). We recall that C(t) is η-prox-regular
if C(t) admits an external tangent ball with radius smaller than η at each x ∈ ∂C(t)
(see Poliquin et al [22], Maury and Venel [20], Colombo and Monteiro Marques [10]).
The points of ∂C(t)\∂S(t) admit an external tangent ball of any radius. Therefore,
to find η, which determines η-prox-regularity of C(t), it is sufficient to focus on the
points of ∂C(t) ∩ ∂S(t). That is why, for a fixed t ∈ R, we can choose η as the
minimum of the radius of curvature through x ∈ ∂C(t) ∩ ∂S(t), see e.g. Lockwood
[19, p. 193].

Let us fix t ∈ R and use the parameterization P (φ) = (− cosφ, b(t) sinφ), φ ∈[
−π2 ,

π
2

]
, for the left-hand side of the ellipse x2 + y2

b(t)2 = 1. Then, the radius of

curvature R(φ) of ∂C(t) ∩ ∂S(t) at P (φ) is (see Lockwood [19, p. xi, p. 21])

R(φ) =
1

b(t)
(sin2 φ+ b(t)2 cos2 φ)

3
2 =

1

b(t)

(
b(t)2 + (1− b(t)2) sin2(φ)

) 3
2 .

Observe that R decreases when |φ| increases from 0 to
π

2
.

Therefore, the minimum curvature of ∂C(t) ∩ ∂S(t) is attained at the point
(p(t), q(t)) as defined in ii). Let φ0 be such that P (φ0) = (p(t), q(t)) and let φ∗ > 0
be such that the second component P2(φ∗) of P (φ∗) equals 1, which exists because
b(t) ≥ 1 (see Fig. 2). Since q(t) ≤ 1, we have φ0 ≤ φ∗, and since φ→ R(φ) decreases
as |φ| increases, we have

R(φ0) ≥ R(φ∗).
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Figure 2. The parameters φ0 and φ∗.

Since P2(φ∗) = 1 implies b(t) sinφ∗ = 1, we have sinφ∗ =
1

b(t)
and so

R(φ0) ≥ 1

b(t)

(
1

b(t)2
+ b(t)2

(
1− 1

b(t)2

)) 3
2

=
1

b(t)
· (1 + b(t)4 − b(t)2)

3
2

b(t)3
=

=
(
b(t)−

8
3 + b(t)

4
3 − b(t)− 2

3

) 3
2 ≥

(
b(t)

4
3 − b(t)− 2

3

) 3
2

.

Noticing that the function b 7→
(
b

4
3 − b− 2

3

) 3
2

increases on [1,∞), we finally conclude

R(φ0) ≥
(
β

4
3 − β− 2

3

) 3
2

.

Therefore, C(t) is η-prox-regular with η =
(
β

4
3 − β− 2

3

) 3
2

.

Substituting the values of Mf , LC , and η into formula (8), we get the following
statement.

Proposition 1. Let α > 0 be an arbitrary constant and b ∈ C1(R, [β,∞)) with
some β ≥ 1 and Lipschitz condition (12). If

α >

4Lb
3β3

+
5

2
α(

β
4
3 − β− 2

3

) 3
2

,

then, the global solution

x(t) = (−1, 0), t ∈ R,
of the sweeping process (1) with C(t) and f(t, x) given by (13) and (11), is globally
asymptotically stable.

As noticed earlier, b 7→
(
b

4
3 − b− 2

3

) 3
2

increases on [1,∞), so that the condition

of Proposition 1 is a lower bound on β.

4. Conclusion. In this paper we proved the existence of at least one global solution
to a nonconvex sweeping process with Lipschitz perturbations. The uniqueness and
exponential stability of the solution follows when the vector field of the sweeping
process is uniformly bounded, strongly monotone and the prox-regularity constant
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of the moving constraint is not too small. A similar condition has been earlier intro-
duced in Tanwani et al [26, Formula (3.5)] where the case of a linear perturbation
is addressed. We further proved that the unique global solution is periodic when
the right-hand-sides of the sweeping process are periodic in time.

Following the lines of Kamenskii et al [14], the ideas of the present work can be
extended to almost periodic solutions and to sweeping processes with small non-
monotone ingredients.

We show in Appendix that the estimate for the prox-regularity constant in
Maury-Venel [20, Proposition 2.15, Proposition 2.17] does not agree with inequality
(8), making our main result inapplicable to the model of [20]. At the same time,
we analyze a toy model where we document how applicability or inapplicability of
our result is linked to the parameters of sweeping process.

The ultimate conclusion of the paper agrees with that of Tanwani et al [26]:
closer the constraint to a convex one, weaker monotonicity is required to keep the
sweeping process globally asymptotically stable.

5. Appendix.

5.1. Proof of Theorem 2.2. Let {ξn}∞n=1 ⊂ Rn be such that ξn ∈ C(−n) for each
n ∈ N. Define

xn(t) =

{
x(t,−n, ξn) if t ≥ −n
ξn if t < −n

where t 7→ x(t,−n, ξn) is the solution t 7→ x(t) of (1) with the initial condition
x(−n) = ξn, n ∈ N. Since C(t) is globally bounded, then, given any k ∈ N,
Edmond-Thibault [12, Theorem 1] ensures that all solutions of the sweeping process
(1) on the interval [−k, k] share the same Lipschitz constant Lk > 0.

We now follow the standard diagonal process in order to extract such a sub-
sequence from {xn(t)}∞n=1 which convergences uniformly on any interval [−k, k],
k ∈ N. Let us denote x0

n(t) = xn(t) on R for each n ∈ N. By Arzela-Ascoli theorem,
there exists a subsequence {x1

n(t)}∞n=1 ⊂ {x0
n(t)}∞n=1 which converges uniformly on

[−1, 1]. Analogously, there exists a subsequence {x2
n(t)}∞n=1 ⊂ {x1

n(t)}∞n=1 which
converges uniformly on [−2, 2]. Repeating this procedure infinitely, we get a family
of subsequences {xkn(t)}∞n=1 ⊂ {xk−1

n (t)}∞n=1, k ∈ N, such that {xkn(t)}∞n=1 con-
verges uniformly on [−k, k] for any k ∈ N. Defining x̄n(t) = xnn(t) on R for each
n ∈ N, we get that {x̄n(t)}∞n=1 converges uniformly on any [−k, k], k ∈ N. Let
x̄(t) = lim

n→∞
x̄n(t).

Let us now show that x̄(t) is a solution of the sweeping process (1). Denote by
x(t) a solution of (1) with the initial condition x(τ) = x̄(τ). Assume x(t0) 6= x̄(t0)
for some t0 > τ . i.e. x(t0) 6= lim

n→∞
x̄n(t0). Then there exist ε0 > 0, such that

for each n ∈ N, there exists mn > n such that ‖x(t0)− x̄mn(t0)‖≥ ε0. (15)

Recall, x̄mn(t) is a solution of (1) for t ≥ −mn. Therefore, we can use the con-
tinuous dependence of solutions on the initial condition (see Edmond-Thibault [12,
Proposition 2]) to conclude the existence of δ > 0 such that

if τ ≥ −mn and ‖x(τ)− x̄mn
(τ)‖< δ then ‖x(t)− x̄mn

(t)‖< ε0, t ∈ [τ, t0]. (16)

The statements (15) and (16) contradict each other for n ∈ N sufficiently large.
Therefore, x(t) = x̄(t) for all t ≥ τ, i.e. x̄(t) is a solution of (1).
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5.2. The crowd motion model. We give a brief introduction into the model
by Maury-Venel [20], before we explain the inapplicability of Theorem 2.3 in this
model.

Consider N people with positions given by x = (x1, x2, . . . , xN ), where each
person is geometrically represented as a disk with center xi ∈ R2 and radius r, so
that x ∈ R2N . Two people (say i-th and j-th) cannot overlap, therefore we have
an unilateral constraint ‖xi − xj‖ > 2r and so the set of feasible configurations is
defined as (see [20])

C = {x ∈ R2N : ‖xi − xj‖ − 2r ≥ 0 for all i < j}. (17)

Let U(x) = (U1(x), U2(x), · · ·UN (x)) be the spontaneous velocity of each person at
the position x, i.e. Ui(x) is the velocity that i-th person would have in the absence of
other people. Since the aim of Maury-Venel [20] is to have a model that describes
people in a highly packed situation, the actual velocity of a person is defined to
be closest to the spontaneous velocity. So the actual velocity is computed as the
projection of the spontaneous velocity onto the set of feasible velocities. This gives
the sweeping process (see [20]){

−ẋ ∈ N(C, x)− U(x)

x(0) = x0 ∈ C.
(18)

Let us consider the situation where there are only two people. By Maury-Venel
[20, Proposition 2.15], the set C in (17) is η-prox regular with η = r

√
2. Let

us take U(x) = −x. Viewing (18) as (1), we get f(t, x) = x and so α = 1 in

(2). Then condition (8) of Theorem 2.3 takes the form
√

2r > LC + Mf , where
LC = 0 (because C in (18) does not depend on t). Therefore, (8) implies Mf <√

2r. On the other hand, according to (7), Mf must satisfy Mf > ‖f(t, x)‖ with
f(t, x) = x for each x ∈ C. Let us consider a pair of people positioned at (0,−r)
and (0, r). Since ‖(0,−r)− (0, r)‖ = 2r, we have (0,−r, 0, r) ∈ C and so Mf verifies

Mf > ‖f(0,−r, 0, r)‖ = ‖(0,−r, 0, r)‖ =
√

02 + (−r)2 + 02 + r2 =
√

2r. Therefore,
Theorem 2.3 does not apply.
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